

Marina Gavaldão

Technical Director GERES Climate Change Unit

A few field experiences from GERES

Can we talk about social carbon?

GERES in a nutshell...

- Group for the Environment, Renewable Energy and Solidarity
- International solidarity and development NGO
- Created in 1976 in France, after the first oil shock
- 5 operational themes: RE; EE; CC; Economic development and Policy and Land Use

- Budget in 2013 : €10 million
- Headquarters at Aubagne (France) and local offices in 9 countries

GERES in the world

Local offices

- Afghanistan
- Benin
- Cambodia
- France
- Indian Himalayas

Other areas of intervention

- Laos Egypt
- Burkina Faso
- Georgia

Senegal Ukraine

Mali

Morocco

GERES | 2015

Key figures (2013)

Climate Change, Energy Savings and Efficiency

Statements

- Heavy pressure on natural resources and growing vulnerability to climate change, as well as reduced resilience
- Combining efforts to fight against CC and poverty, once the more vulnerable is the community, the less efficient the equipment and the greater is the share of the budget devoted to energy expenditure
- Historical responsibility of rich countries and need to leap-frog to low carbon technologies

Solutions

- **Disseminating efficient and less emitting appliances** to make the best use of energy and reduce GHG
- Advocating North-South solidarity in climate policy
- Measuring and minimizing energy consumption and GHG without sacrificing convenience or comfort; and when possible, increase comfort
- Providing information and raising awareness
- Carrying out action research to improve health and gender related issues

NLS project in Cambodia - Key Information

Status: Ended Market: voluntary - VCS Methodology: CDM AMS II.G Crediting period: 2003 to 2013 Estimated users: more than 800,000 people Number of units: over 2.4 million units Number of producers: 32 tCO2e reduced: 2 million Income: US\$11.8 million

Employed to expand the improved cookstove project into an integrated national biomass energy strategy

Today: evolvements towards a rocket stove.

NLS project - Monitoring system

CO₂ calculations

Number of ICS in use and tracking system

Number of ICS in use/Lifespan

Number of ICS in use End-users tracking system

NLS - Monitoring system

Environmental impacts of ICS

Fraction of Non-Renewability of Biomass

Global Forest Watch project (GERES, 2014)

PoA for Local Improved Cookstoves in West Africa Key Information

Status: Registered CDM and finishing GS Validation Starting the monitoring system

Market: CDM+Gold Standard

Methodology: CDM AMS II.G

Crediting period: 7 years renewable

Number of engaged producers: 1

Expected tCO2e/y per CPA: 28,373

Governance improved mechanisms:

- Advisory Committee
- Improved transparency concerning the benefitsharing
- Local Stakeholder Consultation
- Grievance mechanism
- Monitoring of social and environmental impacts

PoA for Local Improved Cookstoves in West Africa – Monitoring system

	Périodicité	Tâches	Responsable	Tậche híph exécutée?		Rôles		
				Ouí	Non	Chargé de suíví	Entíté de gestíon	EOD
PHASE 1	Tous les 2 jours	Récolte de données chez le revendeur	Agent de suivi	Enregistrement dans la BD	AC1	Vérification de la BD		
PHASE 2	Toutes les semaines	Récolte de données chez le producteur	Agent de suivi	Enregistrement dans la BD	AC1	Vérification de la BD		
PHASE 3	Toutes les 3 mois	Rapport du suivi des phases 1 et 2	Chargé de suivi	Transmission à l'EG	AC2	Rédaction du rapport de suivi trimestriel	Examen et enregistrement du rapport de suivi trimestriel	
PHASE 4	Toutes les années	Tests de performance – KPT (Variables: By, baseline_tech, Ny, all, By, new)	Chargé de suivi	Saisie et analyses	AC3	Rapport des KPT	Examen et enregistrement du rapport + rédaction du rapport de suivi	Vérification annuelle
PHASE 5	Toutes les 2 ans	Enquêtes usagers (Variables: U + Fnrb)	Chargé de suivi	Saisie et analyses	AC3	Rapport d'enquête	Examen du rapport et enregistrement des fichiers + rapport de suivi	Vérification annuelle

Légende: BD= Base de données;

AC1=Remplissage à nouveau des cahiers avec le revendeur ou producteur; AC2= reprise du rapport de suivi trimestriel; AC3= Reprise d'une partie de l'enquête ou du KPT.

PoA for Local Improved Cookstoves in West Africa – Monitoring system

Passive Solar Housing in Kabul – Key information

Location: Kabul, Afghanistan

Period: 2012-2015

Technical partners: Solidarités Afghanistan Belgique

Financial partners: French Development Agency (AFD), Abbé Pierre Foundation

Objectives:

- Around 3'000 houses will be fitted out in Kabul by 2015
- Train masterbuilders, crafstman and support the supply-chain developpement (supporting the creation of grass roots associations)
- Construct demonstration buildings

Up to date

October 2014 -> 2'176 passive solar houses (including double-glazing) disseminated through the private sector R&D on new heating and baking bread stove, as well as metal frame and glass verandas.

To reach the same indoor temperature, PSH are estimated to save $0.54 \text{ tCO}_2\text{e}/\text{year}$ when compared to non-PSH.

For the same energy consumption, PSH have shown to increase in 3° C the indoor temperature when compared to non-PSH.

MDG and the PSH technology

WHO recommends 18° C with up to 20-21° C for more vulnerable

Objective: Achieve the minimum services levels - Suppressed demand

Benefits of the Attached Greenhouse

- Increase indoor temperature
- Insulation to avoid heat loss
- Replacing traditional heatingEasy to build with locally available materials

Temperature	Health effects
24°C	Top range of comfort
21°C	Recommended living room temperature
<20°C	Mortality rate begins to rise
18°C	Recommended bedroom temperature
16°C	Resistance to respiratory diseases becomes weakened
12°C	More than two hours at this temperature raises blood pressure and increases heart attack and stroke risk
5°C	Significant risk of hypothermia

Winter Monitoring – Methodology and sampling

4 weeks/2 months of Temperature and Fuel monitoring during winter

Indoor and outdoor temperatures were measured using data loggers and daily fuel consumptions were measured

Statistical analysis respecting the 90/10 confidence interval rule

48 households in total: Without Veranda / With Veranda

Two sampling methods: paired and independent sample

Declarative Data			
Measured Data	Included in this report		
ΤαοΙ	Potential Outputs		

Other relevant work: advocacy

BUYERS' LEVEL:

- CO2Solidaire: Climate solidarity and voluntary carbon offsetting platform
- InfoCC: Carbon offsetting information platform

PROJECT DEVELOPMENT LEVEL:

- Advocacy on suppressed demand
- Standardized Baselines
- Decision tools
- Participating at technical committees from carbon standard as for example Fairtrade

Conclusions

So, can we talk about social carbon? In my view, YES! Because not all carbon projects are similar But is it the right time to do so? Isn't maybe too late?

Problems:

- Demand
- Visibility in terms of the new mechanisms (NMM, FVA, NAMAs?)
- Expensive and challenging monitoring systems for decentralized/portable technologies

Advantages:

- Strict control and overview on the supply-chain
- Support to development projects

But,

What's the point of scaling-up if carbon prices are higher for small/micro-scale projects?

Merci!

Marina Gavaldão

Technical Director/ Directrice technique Climate Change Unit/ Unité Climat

m.gavaldao@geres.eu

www.geres.eu