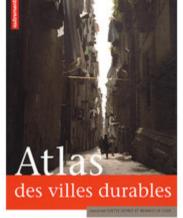


Les enjeux du Changement Climatique en Milieu Urbain

Hubert Mazurek LPED – UMR151

hubert.mazurek@ird.fr

MC3 MEDITERRANEAN CITIES AND CLIMATE CHANGE المدن المتوسطية والتغيرات المناخية



Transports

Nuisances

Patrimoine

Circulation

Planification urbaine

Développement **Urbain Durable**

Climat Urbain

Smart Cities

Îlots de Chaleur

Écologie, urbanisme, société : l'Europe est-elle un modète?

Risques Naturels

Changement Climatique

Urbanisme

Éco-quartier

Périurbain

Les Enieux Urbains

III oan ism

climatechange

Climatique

Villes et Changement

Architecture

Ville

Fragmentation

Enclavement Résidentiel

Urbain

Zéro Carbone

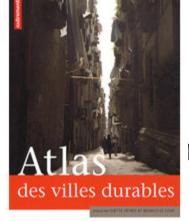
Déchets

Eau

Espaces Verts

Biodiversité Urbaine

Villes Durables


Resilient Cities

Espaces Publics Cities and Climate Change

L'URBANISME

Écologie, urbanisme, société : l'Europe est-elle un modète?

Transports

Nuisances

Patrimoine

Circulation

Planification urbaine

Développement **Urbain Durable**

Les Enieux Urbains Villes et Changement Climatique

Smart Cities

Climat Urbain

Îlots de Chaleur

III oan ism climatechange

Risques Naturels

Changement Climatique

Urbanisme

Éco-quartier

Périurbain

Ville

Fragmentation

Espaces Publics

Enclavement Résidentiel

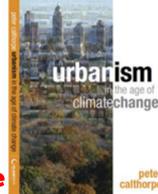
Urbain

Zéro Carbone

Déchets

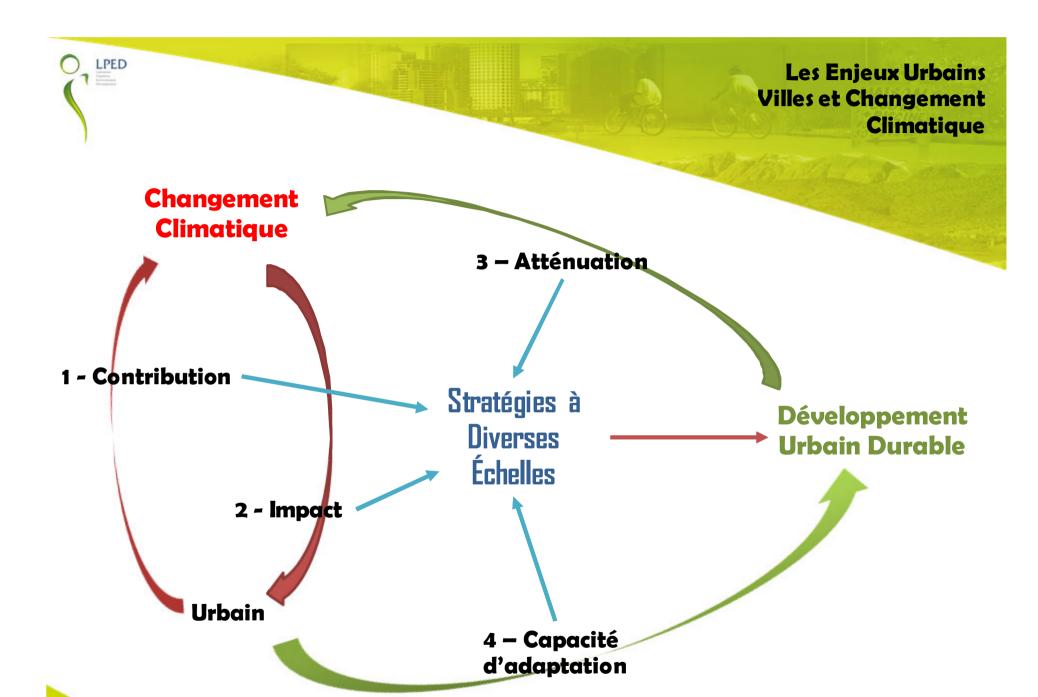
Architecture

L'URBANISME


Villes Durables

Eau

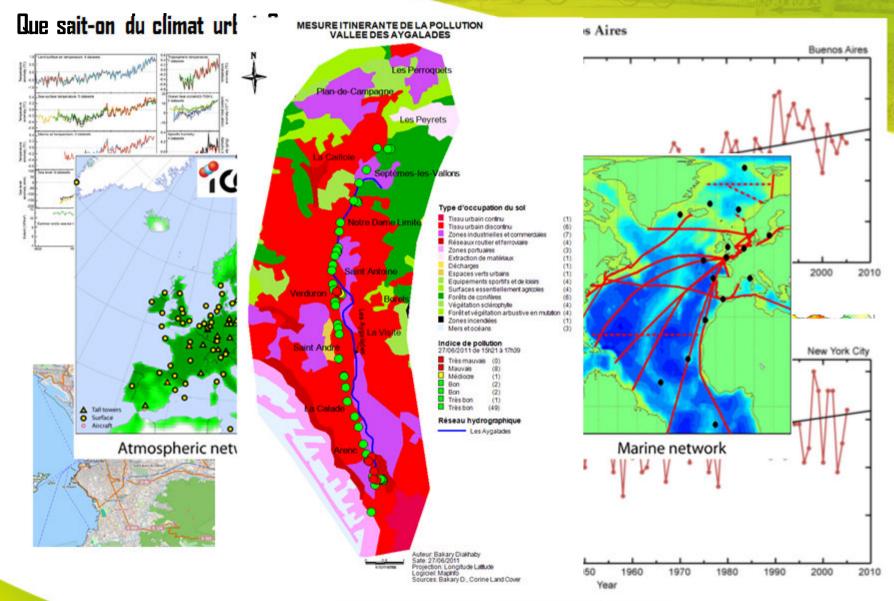
Espaces Verts


Resilient Cities

Biodiversité Urbaine

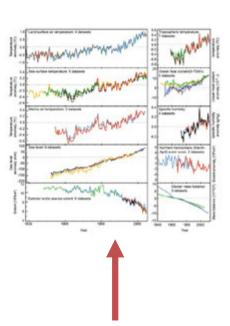
Cities and Climate Change

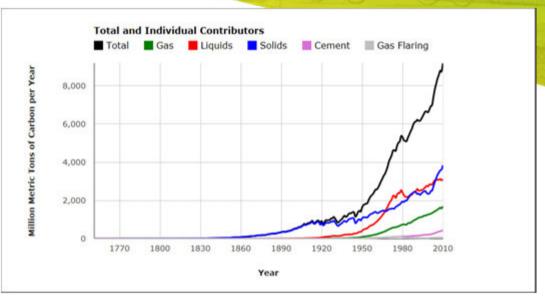
Ouartier Social Dura

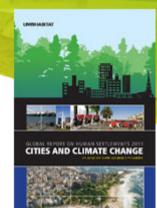


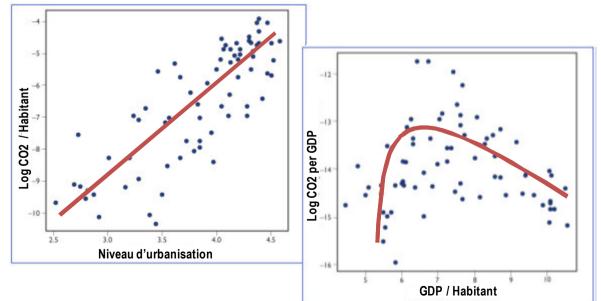
1 – La Contribution des Aires Urbaines au Changement climatique

- 2 Les Impacts du Changement Climatique sur les Aires Urbaines
- 3 L'Atténuation
- 4 Les Adaptations
- 5 Quel Développement Urbain Durable?

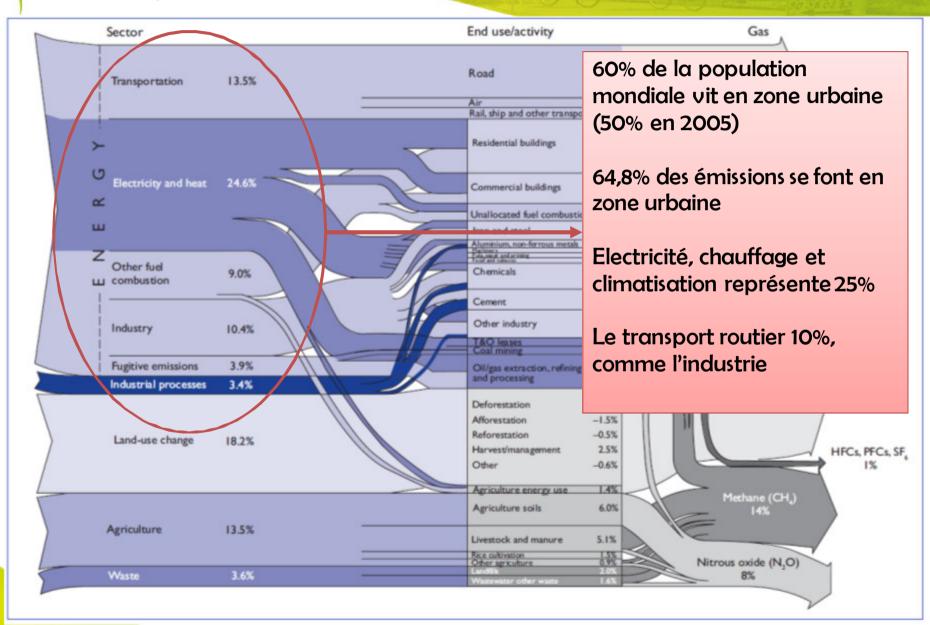




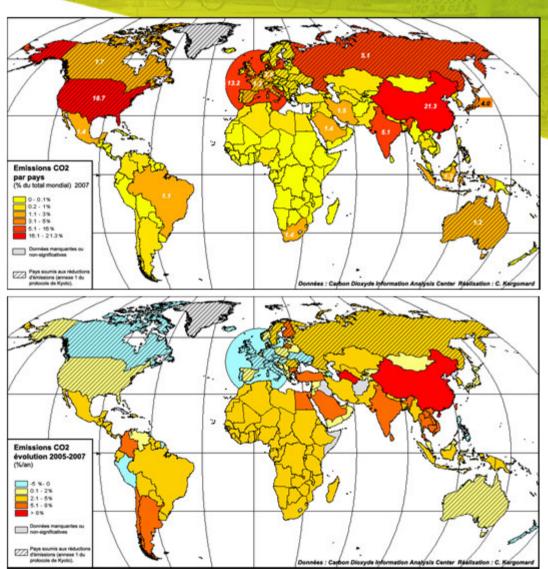

Source: Center for Climate Systems Research, Columbia University

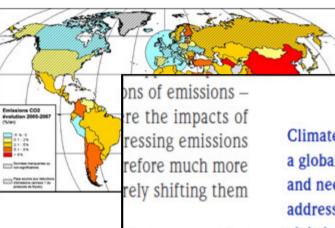

Quelques chiffres:





Quelques chiffres:


Quelques chiffres:

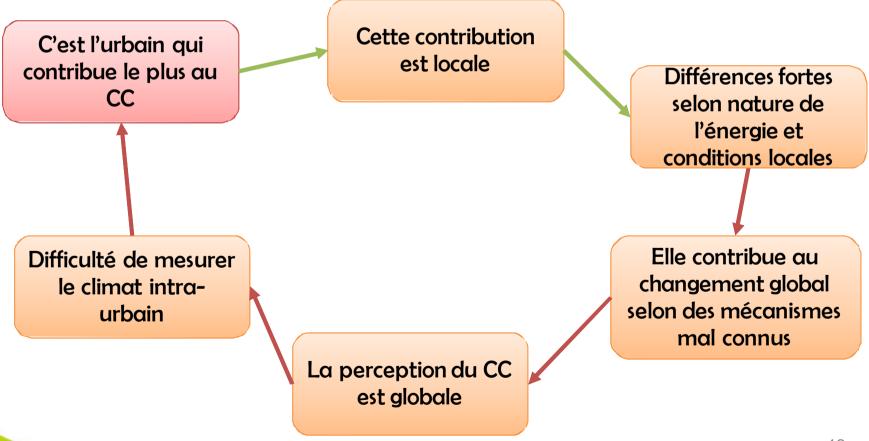

La question de l'échelle:

	GHG / Hab. de la Ville (tonnes	Pays (Tonnes	
Ville	CO2eq.)	CO2eq.)	Rapport Ville/Pays
Shanghai	8,1	3,4	2,38
Beijing	6,9	3,4	2,03
Washinton	19,7	23,9	0,82
Glasgow	8,4	11,2	0,75
Seoul	3,8	6,7	0,57
London	6,2	11,2	0,55
Tokyo	4,8	10,6	0,45
Toronto	8,2	23,7	0,35
Barcelone	3,4	10	0,34
New York City	7,1	23,9	0,30
Rio de Janeiro	2,3	8,2	0,28
Sao Paulo	1,5	8,2	0,18
Source Doodman, 2009			

La question de l'échelle:

elp to ensure that hissions simultanenvironmental and Climate change is a global challenge and needs to be addressed with global solutions

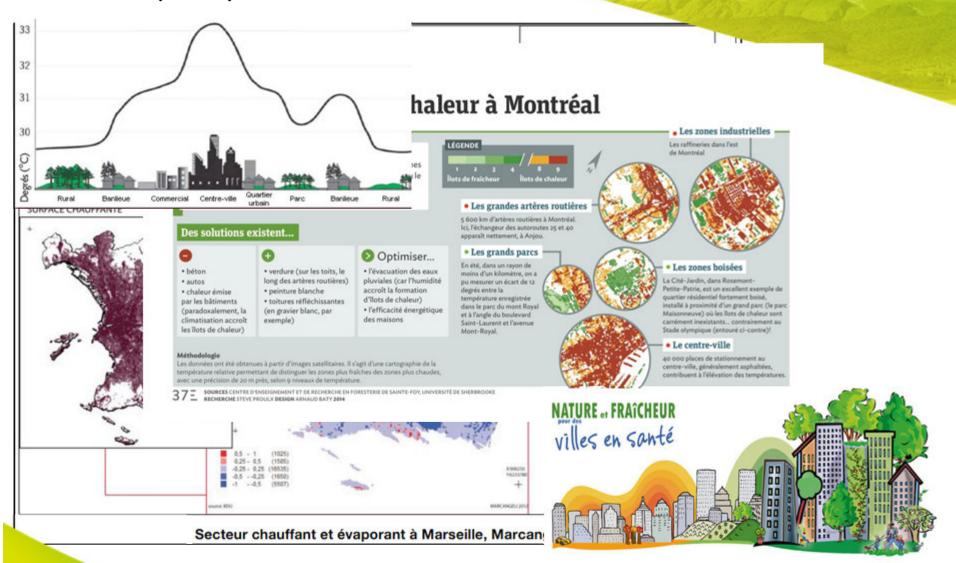
Mexico



1^{er} Enjeu du Changement Climatique: la compréhension du climat urbain au niveau local

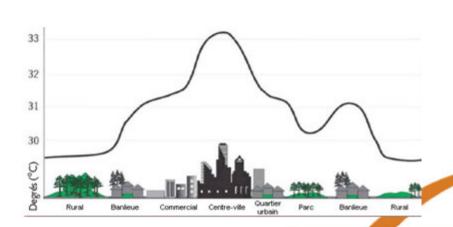
Les Enjeux Urbains Villes et Changement Climatique

- 1 La Contribution des Aires Urbaines au Changement climatique
- 2 Les Impacts du Changement Climatique sur les Aires Urbaines
- 3 L'Atténuation
- 4 Les Adaptations
- 5 Quel Développement Urbain Durable?



Impacts directs positifs et négatifs

- Moins de jours et de nuits froides -> Réduction de la demande de chauffage
- ➤ Moins de neige et glaciers → Réduction des dommages dus au gel ou à la neige
- ➤ Plus de jours chauds → Augmentation de la demande en air conditionné
- ➤ Plus de jours chauds → Augmentation de la prolifération des insectes vecteurs
- ➤ Moins de neige → moins de tourisme, moins d'eau, moins de source hydroélectriques
- ➤ Variabilité climatique Sécheresse → Limitation dans les ressources en eau, biodiversité
- ➤ Variabilité climatique Pluies → Vulnérabilités liées aux logements, glissements de terrain, problèmes de santé
- Cyclones -> pertes de vies humaines Migrations
- ➤ Augmentation du niveau de la mer → Destruction d'infrastructures, pertes de vies humaines Migrations

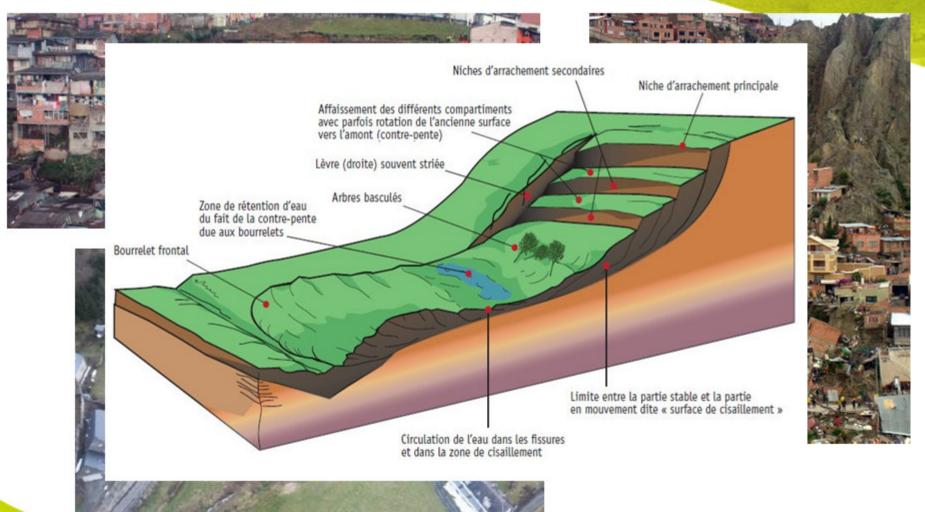


Les ilots de chaleur

Les ilots de chaleur

Verticalité

Vert


Étalement Urbain

Densité Urbaine

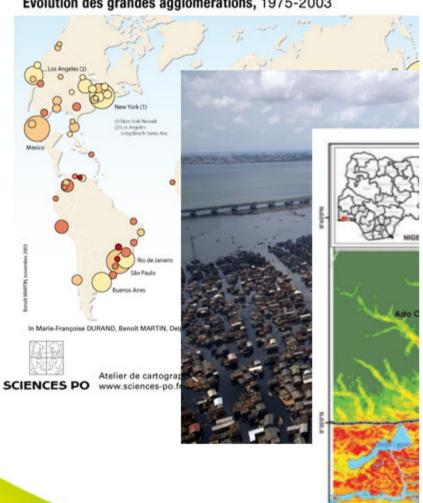
Modélisation?

Les Glissements de Terrain

Les Glissements de Terrain + les inondations

Déforestation Changement des usages

Imperméabilisation des sols et ruissellement


Évènement climatique

MEGAPOLES MENACÉES PAR LA MONTÉE DU NIVEAU DE LA MER

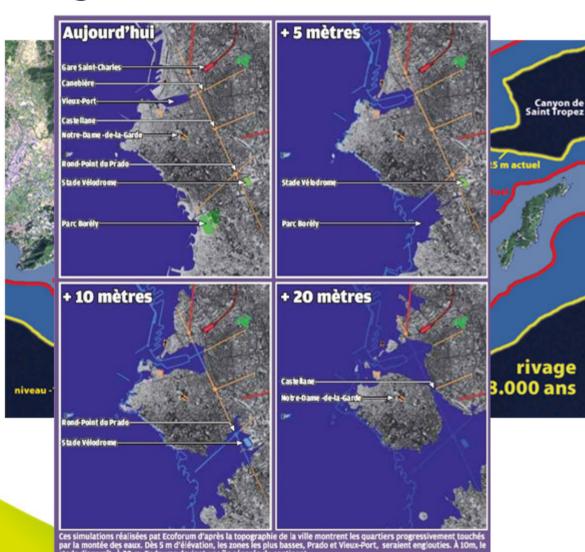
L'augmentation du niveau «

Évolution des grandes agglomérations, 1975-2003

Ville	Pays	Population en 2000* (en millions)	Population prévue en 2025** (en millions)	Observations	
Tokyo	Japon	26	29		
Mombay	Inde	18	26	Ville en très forte progression	
Sao Paulo	Brésil	18	20	Villes côtières dont la majeure partie située à 800 m d'alt	
New York	Etats-Unis	17	18		
Lagos	Nigéria	13	25	Ville en très forte progression	
Calcutta	Inde	13	17		
Shanghai	Chine	13	18		
Los Angeles	Etats-Unis	13	14		
Dhaka	Bangladesh	12	20	A l'intérieur du territoire mais située sur le delta du Gange et du Brahmapoutre.	
Karachi	Pakistan	12	19	Ville en très forte progression	
Buenos Aires	Argentine	12	14		
Djakarta	Indonésie	11	14		
Manille	Philippines	11	15		
La Caire	Egypte	11	14		
Osaka	Japon	11	11		
Riode Janeiro	Brésil	10	12		
Istanbul	Turquie	9	12		

^{*} Source Klein, Nicholls, Thomalla, The resilience of coastal megacities to weatherrelated hazards, 2002;

^{**} Source Cité des sciences (www.cité-sciences.fr).



L'augmentation du niveau de la mer

L'augmentation du niveau de la mer

Modification des traits de côte

Remontée d'eau salée

Destruction des infrastructures

Diminution des zones cultivables (fonds de vallées)

Tourisme

2013

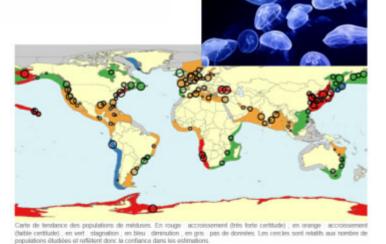
2nd Enjeu du Changement Climatique: L'impact spécifique sur l'Urbain

La prolifération d'espèces invasives

Implantation du moustique tigre en France Zones totalement colinisées par le moustique tigre Zones en cours de colonisation

Source : Brotz et al, Hydrobiologia

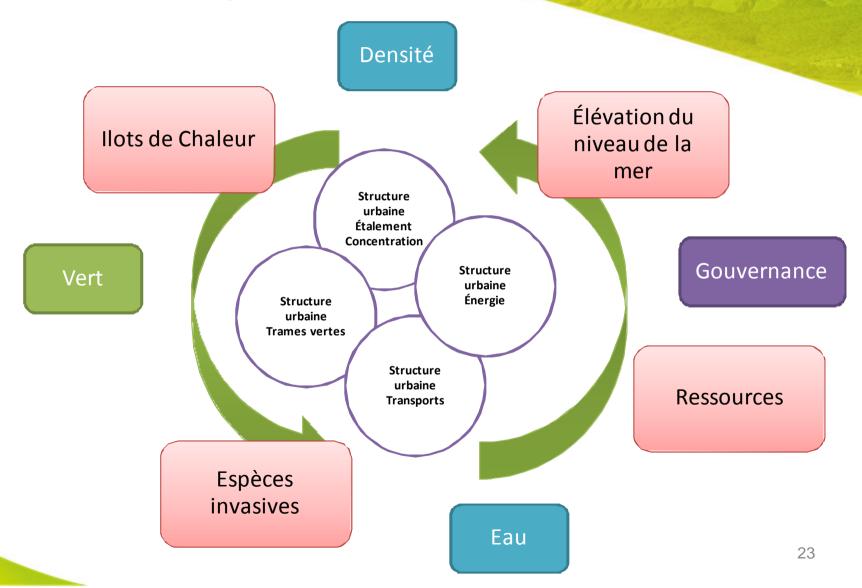
Dengue et Chikungunya


Insectes ravageurs

Niches écologiques

Méduses

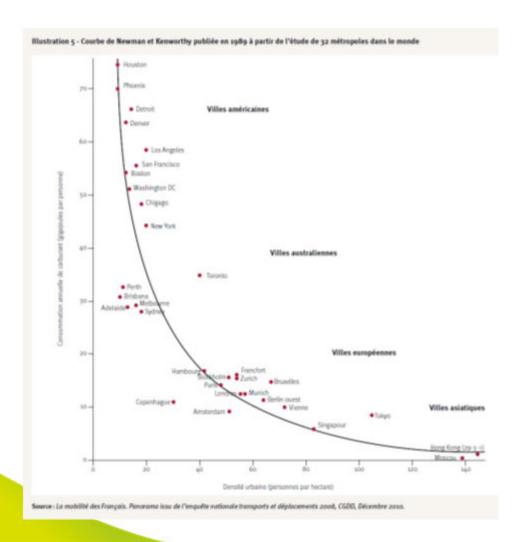
Rongeurs et parasites



Samedi 24 novembre 2012 de 14h à 15h30

2^{ème} Enjeu du Changement Climatique: Les impacts

Maîtriser les Impacts



Les Enjeux Urbains Villes et Changement Climatique

- 1 La Contribution des Aires Urbaines au Changement climatique
- 2 Les Impacts du Changement Climatique sur les Aires Urbaines
- 3 L'Atténuation
- 4 Les Adaptations
- 5 Quel Développement Urbain Durable?

L'obsession du 0 carbone: Densification et Energie ?

Équilibre entre étalement / Densification / Transports

Plus une ville est dense, moins elle consomme d'énergie fossile

Mais plus une ville est dense, plus elle génère d'effets pervers

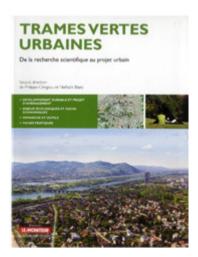
- Stress thermique
- Îlots de chaleurs
- Inconfort climatique
- Problèmes de sécurité
- Problèmes de gestion

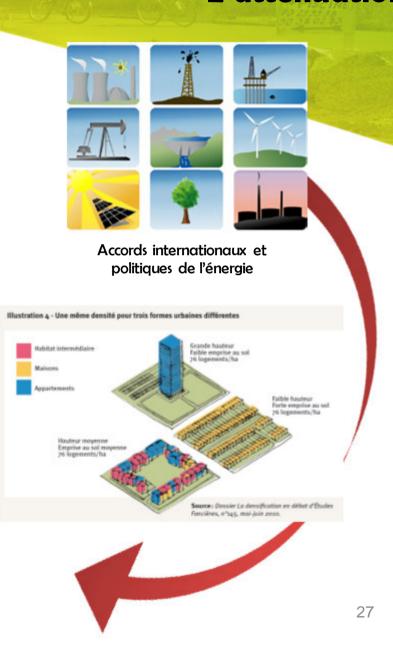
L'obsession du 0 carbone:

Existe-t-il des solutions globales à l'atténuation?

- Politiques et accords internationaux
 COP21
- Politiques nationales de réduction des émissions
- Économies de proximité

Échelles spatiales – Échelles de temps


Les changements de pratiques seront-ils plus rapide que la progression des émissions?



La maîtrise de l'énergie passe par la maîtrise de la densité:

Les enjeux de la recherche en relation à l'atténuation: la modélisation urbaine

- Étalement et densité / Usages des énergies
- Comportement du climat intra urbain / Dissipation des Énergies
- Représentation et pratiques des citoyens / Usage de l'espace
- Gouvernance / Gestion urbaine

La maîtrise de l'énergie passe par la maîtrise de l'urbanisme:

			Consommation (cl bătiments sur l	im+chauffage) des 'agglomération	Consommation des bâtiments moins Production solaire totale sur l'agglomération		
			Consommations GWb/an	Emissions Mega-tonnes eq COu/an	Consommations GWh/an	Emissions Mega-tonnes eq COz/an	
Paris	Climat présent		114517	+2.52	+84684	+1.86	
Paris 2100	Climat présent	Ville compacte	60189	+1.32	+17611	+0.39	
	Climat présent	Ville étendue	59983	+1.32	+14255	+0.31	
	Climat futur	Ville compacte	40983	+0.90	-1595	-0.04	
	Climat futur	Ville étendue	41122	+0.90	-4606	-0.10	

Tableau 4 : Emissions résultant des consommations d'énergie des bâtiments simulées pour la ville compacte et la ville

ANR Muscade – Rapport Final

Panneaux solaires

- Diminue l'effet d'îlot
- 70% à 76% de la consommation annuelle d'énergie domestique (problème du stockage)
- Énergie mixte entre solaire, chaleur et éolien

Usages

- Comportements en relation au chauffage: 2º de moins, c'est 28% de consommation en moins – Usage des volets permet de diminuer la climatisation
- La climatisation augmente l'intensité de l'îlot de chaleur

Végétation

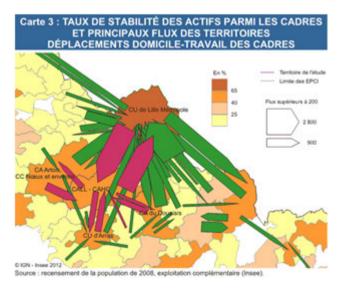
- Végétation urbaine est plus efficace que les toits végétalisés
- Le toit végétalisé est un mauvais isolant (relatif)
- La végétalisation nécessite la consommation d'eau

Formes Urbaines

- Forme dense de bâti nécessite moins d'énergie et de transport
- Mais la différence est faible du fait du rafraîchissement hivernal et des effets de spécialisation spatiale des activités
- La ville compacte consomme plus en climatisation dans le cas de stress thermique

LPED

3^{ème} Enjeu du Changement Climatique: L'atténuation


La maîtrise de l'énergie passe par la maîtrise des transports:

- Technologies certes.....
- Mais restructuration des espaces urbains
- Marchés de proximité
- Lien social

Les Enjeux Urbains Villes et Changement Climatique

- 1 La Contribution des Aires Urbaines au Changement climatique
- 2 Les Impacts du Changement Climatique sur les Aires Urbaines
- 3 L'Atténuation
- 4 Les Adaptations
- 5 Quel Développement Urbain Durable?

Que signifie s'adapter en milieu urbain?

« Ce sont les villes, et non pas les nations, qui apporteront une solution au changement climatique »

Adaptation = Mise en accord des organes avec la fonction

<u>Pays riches</u>: adaptation provient des investissements et des changements de comportement

<u>Pays pauvres</u>: augmentation de la mortalité des personnes vulnérables et migrations

IPCC: « L'adaptation au changement climatique inclut toutes les actions pour réduire la vulnérabilité d'un système (la ville), d'une population ou d'un individu face aux impacts adverses du CC »

Prométhée ?

Le modèle urbain durable par l'artificialisation de la Nature, sa maîtrise technologique

Produire la ville durable

- Ville zéro carbone
- Éco quartier
- Smart City
- Agriculture hors-sol

ou Orphée?

Le modèle urbain durable par l'intégration d'une rationalité multiple et du bien vivre

Transformer la ville pour être soutenable

- Maîtrise de la densité
- Usage des végétaux
- Corridors
- Multi-activité
- Participative

Sous la direction de Thierry Paquot et Chris Younès

Philosophie de l'environnement et milieux urbains

D'après Joëlle Salomon Cavin et Dominique Bourg

4ème Enjeu du Changement Climatique: L'adaptation

Prométhée

THINKING SMART

At Intel Labs, engineers create ingenious ways to build high-tech, connect

Expected number of connected devices by 2020. Digital intelligence is the key to making life safer and more efficient.

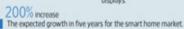
EUROMÉDITERRANÉE

Marseille Euroméditerranée

ca aux ambitions

M EMAIL

SMART HOMES


Intelligent street lightin The Near Future Finland, uses automatio Living a seamlessly connected lifestyle dim or brighten depend isn't as far off as you would think Intel environmental condition chips can be placed virtually anywhere. from human skin to a running shoe.

everyday items to help you make smarter decisions.

SAFER DRIVING

Connected with wireless displays Connected with wireless mobile displays

- ► Marseille -Euroméditerranée EcoCité 2009 du Ministère de l'Egalité des Territoires et du Logement (METL) / ille de Demain rogramme d'Investissements d'Avenir
- ➤ Marselle capitale mondiale de l'eau (mars
- ➤ Marseille capitale européenne de la Culture

Marseille, une ville durable exemplaire

- Opération de renouvellement urbain de 480 hectares en centre-ville (friches industrielles, zones portuaires) la plus grande d'Europe dont le développement urbain est une composante forte
- Stratégie d'aménagement et de construction « Low Cost/ Easy Tech » dans un contexte économique et social difficile : trouver le meilleur compromis entre qua OOGLE •
- Démarche intégrée
 - Objectif 1 : Contribuer au fait métropolitain en assurant un effet levier tant sur l'ensemble du territoire
- Objectif 2 : Concevoir, expérimenter et développer les principes générateurs d'isour le Maroc et le Grand EcoCité Méditerranéenne Low Cost/Easy tech et innovante, diffusable à l'échelle de la métropole et sur les rives de la méditerranée.
- Obiectif 3 : Poursuivre le développement économique, accompagner la mutatione de Zenata, qui sera située sociale et culturelle
- Objectif 4 : Promouvoir une ville innovante et apprenante

ent de la ville de Zénata. développement (AFD) ancement initial de ce

farrouda et dans la deuxième 1 Casablanca, doit d'ici à 2030

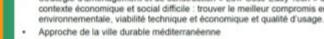
plan de développement au

nisation. Ce programme

villes nouvelles dans le

esna (près de Rabat) ou

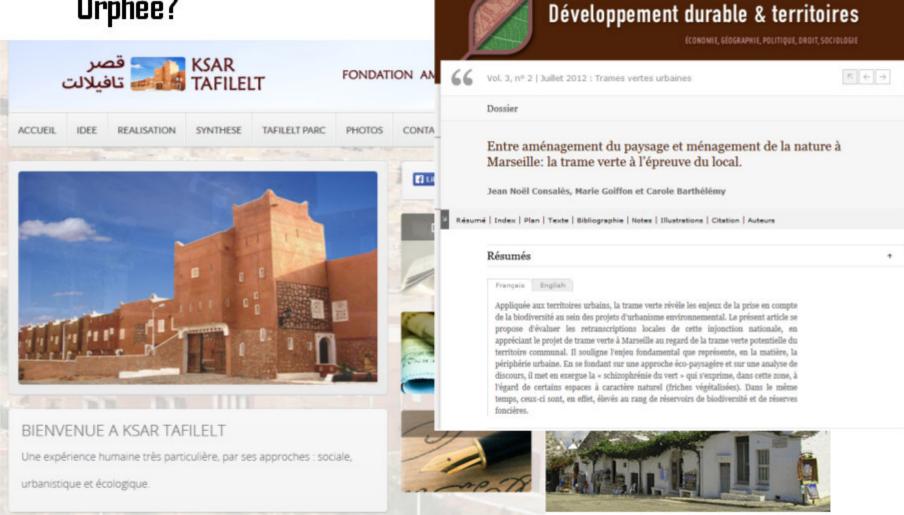
Quelques illustrations de projets dans les domaines suivants


ECO-CONCEPTION URBAINE

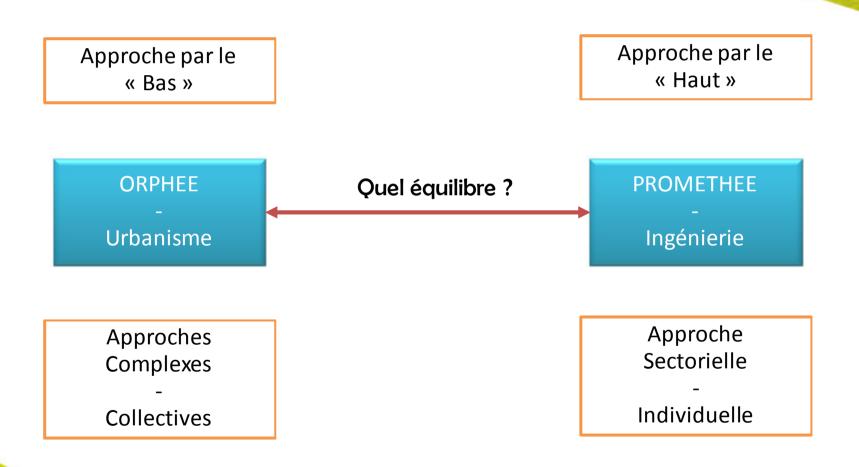
Projets d'Aménagement urbain

Euroméditerranée : Un projet d'aménagement intégré : 5 Principes

- 1. Mixité sociale, fonctionnelle et intergénérationnelle
- 2. Approche bioclimatique de l'urbanisme et de l'architecture
- Nature en ville (projet à l'échelle du grand territoire), qui s'intègre notamment du déjà été lancés, avec plus


ou moins de succès. La ville nouvelle de Tamesna inaugurée le 13

s d'euros sur la table dans



Orphée?

Adaptation ?

Les Enjeux Urbains Villes et Changement Climatique

- 1 La Contribution des Aires Urbaines au Changement climatique
- 2 Les Impacts du Changement Climatique sur les Aires Urbaines
- 3 L'Atténuation
- 4 Les Adaptations
- 5 Quel Développement Urbain Durable?

Le Modèle de la Ville Durable

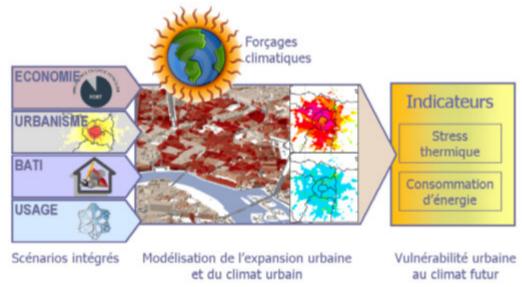
Moyen âge: « *Organisme compact* souvent enfermé dans une enceinte»

19ème-20ème: « Une ville durable est une ville sans typhoïde »

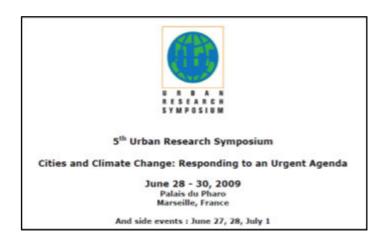
Pompidou - 1971: « *Il faut adapter la ville à l'automobile* »

Années 70-80: Densification et grands ensembles

21ème: Éco-Quartiers



Le Modèle de la Ville Durable

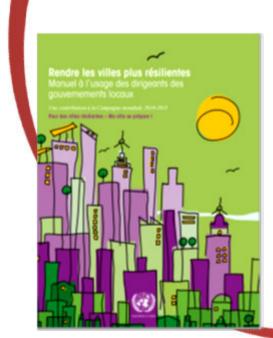

Est-ce le bon modèle?

Pour Quel Objectif?

Le Modèle de la Ville Durable

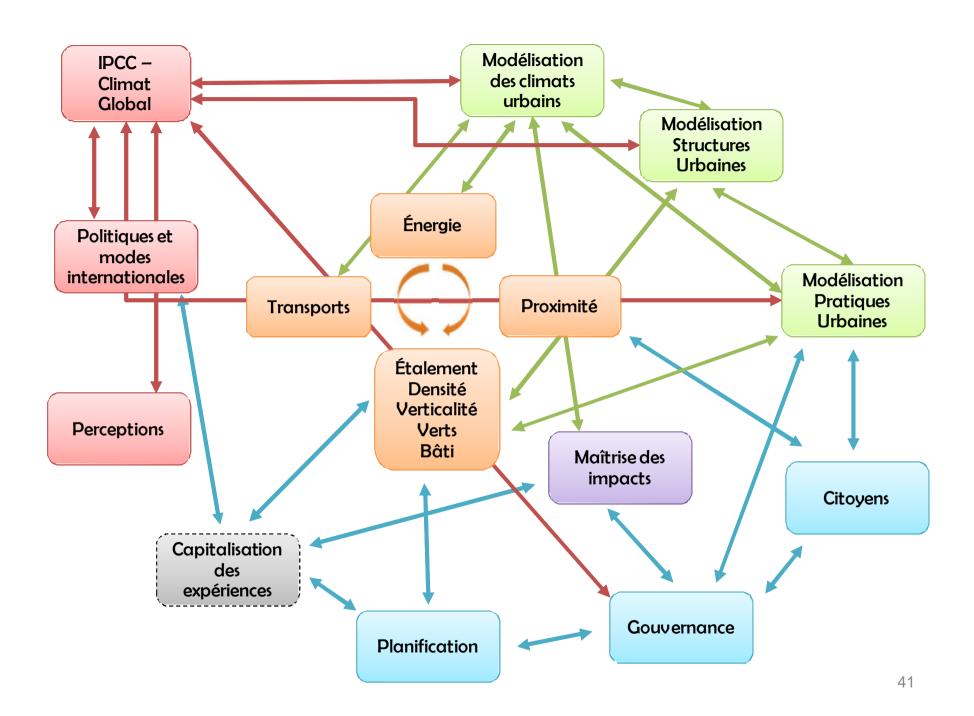
Est-ce le bon modèle?

Problème de nos connaissances

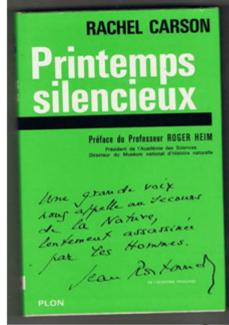

- Les approches restent sectorielles
- Les programmes de recherche sont peu adaptés
- Les processus urbains sont peu étudiés
- Manque certain de relation recherche politique

- Approches sur la vulnérabilité Approches sur la résilience
- Revoir la définition de concepts polysémiques
- Modéliser les échelles de temps et d'espace
- Faire de l'expérimentation (alliances)
- Mettre en commun les expériences

La question de l'échelle



Est-ce le bon modèle? Pour Quel Objectif?



MERCI!

BIOSPHERE – ARIZONA - 1985