Impacts of biological invasions

Montserrat Vilà

OT-Med Conference Marseille, December 17, 2012

Pathways of introduction

(Modified from Jeanmonod 1998)

Decrease in diversity

Disruption of trophic networks

Procambarus clarkii

Dreissena polimorpha

Acacia spp.

Robinia pseudoacacia

(Foto: Sanz_Elorza et al 2004)

Changes in ecosystem functioning

Myrica faya

N source		
(kg/ha/any)	M. Faya	M. Faya
	No	Yes
Raining	5	5
Natural N- fixing	<0.6	<0.7
<i>M. faya</i> N-fixing	0	18

Total

5.5

23.5

- 1) Glonal analysis of alien plant impacts
- 2) European assessment of alien species impacts

- 1) Glonal analysis of alien plant impacts
- 2) European assessment of alien species impacts

Objectives

 Quantify the magnitude of their effects on species, communities and ecosystems.

 Compare differences between Nfixing and non N-fixing species.

Methods

- Screening 533 SCI articles:
 - -199 articles
 - –1041 field studies for 135 alien plant taxa
 - -24 ecological impact types
- Meta-analysis (Hedges' d)

Effects on plants

Effects on animals

Effects on ecosystems

Conclusions

- Magnitude and direction varied between and within impact types (5 orders magnitude).
- Consistent change in 13 out if 24 impact types.
- Largest on plant production, diversity and N availability.
- N-fixing species impact on N cycling.

Number of impacts through time

Hulme et al. Trends in Ecology & Evolution (in press)

Number of impacts

Number of response variables examined

Hulme et al. Trends in Ecology & Evolution (in press)

Live-form bias

Geographic bias

Hulme et al. Trends in Ecology & Evolution (in press)

- 1) Glonal analysis of alien plant impacts
- 2) European assessment of alien species impacts

Ecological and economic impact by taxa

Ecological (%) Economic (%)

Terrestrial plants	326 (5)	315 (5)
Terrestrial invertebrates	342 (14)	601 (24)
Terrestrial vertebrates	109 (30)	138 (38)
Aquatic inland	145 (30)	117 (24)
Marine	172 (16)	176 (16)

(Vilà et al. Front. Ecol. Env.,2010)

Ecological-economic relationship by region

Terrestrial vertebrates

Ecological-economic relationship by region

Top 3 with widespread impacts

Ondatra zibethicus (71)

Nyctereutes procyonoides (60)

Rattus norvegicus (51)

http://www.europe-aliens.org/

Ecosystem services

- 5 Supporting
- 3 provisioning
- 10 regulating
- 4 cultural

Variety of impacts

Top plants with more impact types

Acacia dealbata

Oxalis pes-caprae

Carpobrotus spp.

Top vertebrates with more impact types

Top freshwater with more impact types

Salvelinus fontinalis

Dreissena polymorpha

Procambarus clarkii

Top marine with more impact types

Erradication/control

50 Mio €

Infraestructure damage and restoration

Teredo navalis 75 Mio € (1993-2007)

(Leppäkoski et al. 2002)

Agricultural and forestry damages

Weed control in UK 256 Mio € (1983-1992)

(Williamson 1998)

Loss of commercial fisheries

Mnemiopsis leidyi (12 Mio €/ per year)

(Knowler 2005)

Human health

Ambrosia artemisiifolia (20-50 Mio €/ per year)

Chattonella spp (7 Mio € in 2001)

(Hopkins 2002)

Reinhardt et al. 2003)

Desease vectors

Sociocultural impacts

- Education and inspiration
- Source of knowledgement
- Cultural heritage
- Aestetics

Ecotourism

How much the impacts cost to Europe?

- € Eradication/control/containment
- € Infrastructure damage and restoration
- € Agricultural and forestry damages
- € Loss of commercial fisheries
- € Human health
- € (Research, consulting, prevention, monitoring)
- 10 billion €/yr (COM2008 789, EC, Brussels 2008)

Conclusions

- More than 10 % alien species are causing impacts
- Lack of impact can be confounded by research intensity
- Invaders cause multiple impacts to relevant ecosystem services and human well-being
- There is a positive relationship between ecological and economic impact
- Information on impacts/monetary costs is scarce and it is likely to be underestimated for

species-rich taxa highly invaded regions nontangible impacts.

Further questions

 Which plant species traits confer the highest impact and where?

Are there thresholds for impact?

 Which impacts have the largest legacies?

