

Land Change: global change in local places

Peter Verburg

Human influence on the environment (Ellis et al., 2010)

Human influence on the environment (Ellis et al., 2010)

Act now to stop land grabs

GRÓW

FOOD. LIFE. PLANET.

JOIN GROW

Sign up and we'll let you know about all the ways you can make a difference.

60 🛤

Like I,571 people like this, Sign Up to see what your friends like.

The land rush is real

In many countries a significant share of agricultural land is concerned

landportal.info/landmatrix

Land Matrix landportal.info/landmatrix

Local land change in a telecoupled world

Telecoupling

Environmental Studies

J. Liu, unpublished

Agricultural production

Expansion: land cover change

Food security

Agricultural intensity (cropland areas)

Based on Neumann et al. (2010), Agricultural Systems 103, 316-326.

Rounsevell et al., 2012

Food security

Forest transition: changing forest/population relations

Kauppi et al., 2006

Market influence

Environmental Studies

20

Spatial trade-offs: a scenario study 2000-2030

IVM Institute for Environmental Studies Verburg et al., 2008 Annals of Regional Science

Banse et al., 2010 Biomass and Bioenergy ²¹

Spatial trade-offs

Land Sparing vs. Land Sharing

- Land sparing: human activities very intensive on 'restricted' area.
 - High impact on ecosystem services in affected area
 - Low impact on ecosystems in remaining area
 - ⊗ Spatial/temporal spill-over / re-bound effects
 - ⊗ Not all ecosystem services can be 'transported'

- Land sharing: multi-functional land use
 - Based on synergies in ecosystem service provision
 - Extensive land uses, requiring large areas
 - ⊗ Large land requirements, no 'wilderness'

Land use intensity

A historic perspective

Kaplan et al, 2009 Standard scenario

Kaplan et al, 2009 Technology scenario

Pongratz et al. (2008) Maximum scenario

Klein Goldewijk et al. (2010) HYDE 3.1

IVM Institute for

Environmental Studies

Fraction of gridcell under natural vegetation

Environmental Studies

What does (land use) history teach us?

Simulation experiment SOC stocks and land use history

Luse change Netherlands 1900-2000

Carbon stocks and 'age' of agricultural conversion

Explaining variables of soil carbon stocks

Independent variables	Site				
	Nieuwleusen	Achterhoek	Veluwe	Den Bosch	All sites
	Associations with SOC content – Determinants separately				
Site factors					
Loam content	23%	11%	6%	5%	0%
Median sand grain size	6%	1%	4%	6%	2%
Elevation	2%	8%	8%	4%	0%
Groundwater class	5%	3%	2%	3%	2%
Soil type	21%	6%	2%	12%	10%
Geomorphology	0%*	6%	3%	8%	4%
Land use history					
Reclamation type	14%	1%	2%	3%	17%
Land use 1900	15%	4%	3%	8%	2%
Reclamation age	12%	1%	1%	1%	1%
Present-day land use and management					
Land use 1999	0% *	1%	1%	3%	1%
Permanent grassland	0% *	0% *	1%	1% *	0%
OC _{eff} input by crops per zip code region	19%	4%	0%*	1%	2%
OC _{eff} input by livestock per zip code region	16%	0%*	1%	3%	2%
OC _{eff} input by crops per municipality					6%
OC _{eff} input by livestock per municipality					9%

Improved soil carbon inventory accounting for land use history

Schulp et al., 2013

Learning from history: validating land change models

Land use type specific conversion settings -How likely is a land use type to change

-Which conversions are allowed

Model results

Lessons from historic land use analysis

- Large legacy effects
- Path dependence (e.g. cities)
- Large transitions have occurred due to changing humanenvironment interactions, fluctuations in land use
- Learn from areas with long-term sustainable production
- Telecoupling is not new (colonial period), but interactions are more intense and faster
- Demand for 'services' from the land is unprecedented
- Model predictions based on historic trends likely to be irrealistic

Landcover - 2100 - B1

Asselen & Verburg, 2012 GCB

Cropland Systems

Cropland; extensive with few livestock Cropland; extensive with bovines, goats & sheep Cropland; extensive with pigs & poultry Cropland; medium intensive with few livestock Cropland; medium intensive with bovines, goats & sheep Cropland; medium intensive with pigs & poultry Cropland; intensive with few livestock Cropland; intensive with few livestock Cropland; intensive with bovines, goats & sheep Cropland; intensive with bovines, goats & sheep

Mosaic cropland and grassland systems

- Mosaic cropland and grassland with bovines, goats & sheep
- Mosaic cropland and grassland with pigs & poultry
- Mosaic cropland (extensive) and grassland with few livestock
- Mosaic cropland (medium intensive) and grassland with few livestoc
- Mosaic cropland (intensive) and grassland with few livestock

Mosaic cropland and forest systems

- Mosaic cropland and forest with pigs & poultry
- Mosaic cropland (extensive) and forest with few livestock
- Mosaic cropland (medium intensive) and forest with few livestock
- Mosaic cropland (intensive) and forest with few livestock

Increase in crop production

Land change is a CONSEQUENCE of global change

Land change is a major CAUSE of global change

Land change is a possible SOLUTION to global change

Land governanceLand system architecture

Rural development potentials

(Van Berkel and Verburg, Land use policy)

Key messages

- Land change happens at the interface of the human and physical earth system
- Contextualized, place-based land governance solutions are needed to meet the sustainable development targets of the millenium development goals
- Local solutions adapted to the global context are needed
- Land science can act as a platform integrating research efforts, connecting different perspectives across scales

Peter.Verburg@vu.nl Institute for Environmental Studies VU University Amsterdam http://www.ivm.vu.nl

Thank you!

Global Land Project 2nd Open Science Meeting

Land Transformations: between global challenges and local realities

Berlin, Germany March 19-21, 2014

www.glp-osm2014.org

Call for <u>Session proposals</u> closes on January 31st, 2013

IVM Institute for Environmental Studies

www.globallandproject.org