Solar energy for irrigation: mitigation and adaptation option for the Mediterranean

Marianela Fader

Thanks to: Sinan Shi, Werner von Bloh, Fabian Boyard, Alberte Bondeau, Wolfgang Cramer

Research questions & integration in OT-Med

- 1. Irrigation water requirements in the Mediterranean
- 2. Potential savings through more efficient irrigation systems
- 3. Can photovoltaics provide the energy needed for future irrigation? And if yes, using how much area?

Research questions & integration in OT-Med

- 1. Irrigation water requirements in the Mediterranean
- 2. Potential savings through more efficient irrigation systems
- 3. Can photovoltaics provide the energy needed for future irrigation? And if yes, using how much area?

OT-MED objectives:

- Interdisciplinary research human environment interactions
- Innovative strategies to help decision-makers in elaborating public policies and enterprises in treating environmental questions

TWP2 objective:

 Sensitivity of the Mediterranean's anthropogenic ecosystems to projected climate changes

3

Modelling tool: LPJmL

PhenologyManagementProductionImage: DescriptionImage: Description</t

Irrigated and rainfed agriculture, grasslands, natural vegetation

C, H₂O exchange

Photosynthesis ⇔ Water availability

- River discharge (Gerten et al., 2004; Biemans et al., 2009)
- Irrigation water requirements (Rost et al., 2008)
- Water consumption of crops (Fader et al., 2010)

Modelling tool: LPJmL

Climate, CO₂ concentration, soil structure, land use

2nd OT-Med Progress Meeting 27-28 Nov. 2014

Model development: 10 Med. cultivars included

Irrigated areas %

Agricultural trees: for adult trees a plant-specific portion of the biomass increment of the tree is harvested every year.

- **Deciduous:** fruits grow in the second half of the active phase of the year
- **Evergreen:** fruits grow in days where temperature is above the tree-specific base temperature.

Potatoes (annual crop): Phenology modelled after the heat unit theory. Spring and winter varieties.

Vegetables and fodder grass: parameterised as C3 grass (allows multiple harvests).

Model calibration & validation

Agricultural management calibrated for best possible match with FAO yield data.

New algorithm developed

Testing irrigation water consumption with the GCWM (Siebert et al., 2010)

New testing routine developed

Climate change will increase irrigation requirements

Can we drive irrigation with photovoltaics?

3 ha grapes farm, Sprinkler, 34% increase in NIR (5°C warming 2080), Marseille ~200 m³ d⁻¹ for 3 ha 4 pumps working 5 h d⁻¹

Energy needed in 2000: ~84 MJ d⁻¹ Energy needed in 2080: ~112 MJ d⁻¹ Photovoltaic area needed in 2080 46 m²

3 ha maize farm, Drip, 25% increase in NIR
(5°C warming 2080), Marseille
~90 m³ d⁻¹ for 3 ha
3 pumps working 3 h d⁻¹

Energy needed in 2000: ~42 MJ d⁻¹ Energy needed in 2080: ~50 MJ d⁻¹ Photovoltaic area needed in 2080 21 m²

Can we drive irrigation with photovoltaics?

3 ha grapes farm, Sprinkler, 34% increase in NIR (5°C warming 2080), Marseille ~200 m³ d⁻¹ for 3 ha 4 pumps working 5 h d⁻¹

Energy needed in 2000: ~84 MJ d⁻¹ Energy needed in 2080: ~112 MJ d⁻¹ Photovoltaic area needed in 2080 46 m² 3 ha maize farm, Drip, 25% increase in NIR
(5°C warming 2080), Marseille
~90 m³ d⁻¹ for 3 ha
3 pumps working 3 h d⁻¹

Energy needed in 2000: ~42 MJ d⁻¹ Energy needed in 2080: ~50 MJ d⁻¹ Photovoltaic area needed in 2080 21 m²

