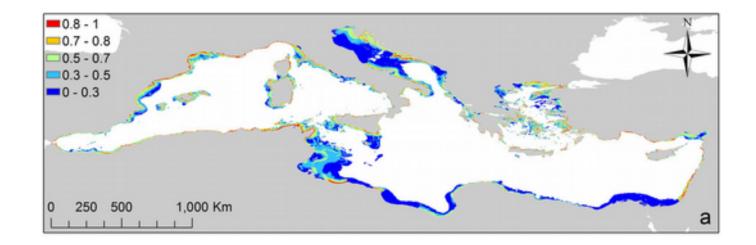


The evolutionary challenge of global change: diversity, adaptation and phenology in Mediterranean marine organisms

Pratlong Marine

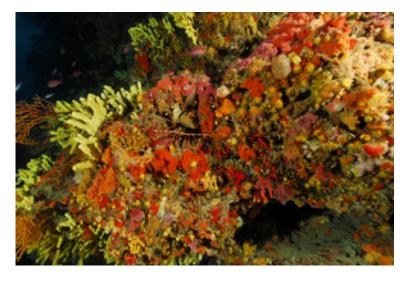
IMBE – Team Interaction, Diversity, Evolution & Adaptation I2M – Team Biological Evolution and Modelisation

Institut de recherche pour le développement



WP2 An evolutionary approach

Three projects, one goal


The understanding of the **coralligenous biocenosis**

→ **Emblematic** from the Mediterranean Sea

<u>Definition</u>: Hard substrate of biogenic origin that is mainly produced by the accumulation of calcareous encrusting algae.

Biological importance

- **Hot-spots** of biodiversity in the Mediterranean Sea \rightarrow **1700 species**
- Carbon sinks in the Mediterranean Sea

Economical and social importance

- Harvesting of the red coral since 5 000 years
 - → Today a multi-million dollars industry

- <u>ex</u>: Torre Del Greco, Italia \rightarrow **\$200 millions** per year
- Habitat and reproductionsite for several species with **high** commercial value for fishering
 - High economical value for its **attractivity** to recreative diving
 → the most preferred diving spot in the Mediterranean Sea

Threats

- Harvesting and fishing
- Erosing effects: diving, anchoring and

fishing nets

J.G Harmelin

- Pollution
- Acidification
- Invasive species
- Climate change

Evolution of the coralligenous biocenosis in the context of the global change ?

We need to know:

- The actual state and functioning of this ecosystem
- The **impact of temperature** on the populations

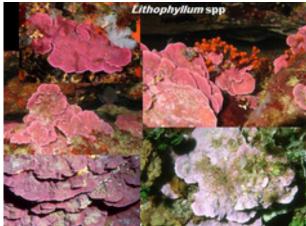
Understanding ecological functioning of coralligenous habitats, and building new indicators based on genetic tools to assess their GES (good environmental status) Aurélien De Jode OT-Med first year PhD

<u>Aim:</u> Creation of indices to **monitor the environmental status**

→ Evaluation of **connectivity** patterns among localities and ecological profiles (integration of marine currents informations)

→ Estimation of the **biodiversity** of coralligenous biocenosis

Specific diversity


Frédéric Zuberer

Genetic diversity of two builders

Myriapora truncata

> Lithophyllum spp.

Frédéric Zuberer

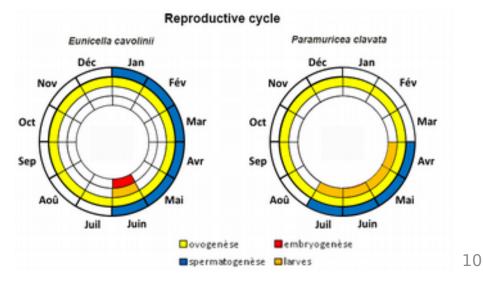
Contribution of phenology to study the **impact** of **climate change** on coastal environment: the octocorals as model species

Alexander Ereskovsky

<u>Phenology</u>: study of periodic life cycle events and how there are influenced by **variations in climate** and **habitats factors**

Frédéric Zuberer

Frédéric Zuberer

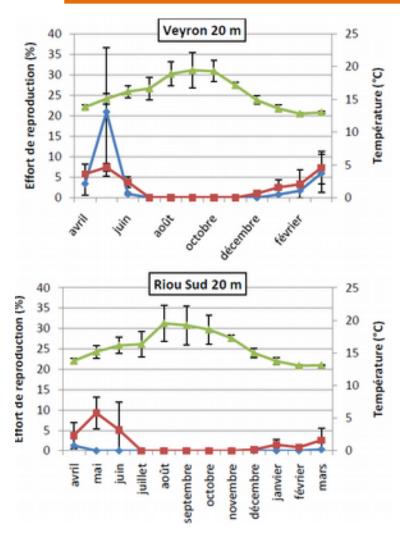


<u>Aim:</u> Monitor the phenology of emblematic Mediterranean species to better understand the dynamics of these populations and their potential response to climate change

Alexander Ereskovsky

 \rightarrow Test the impact of temperature on:

- Reproductive cycle
- Fecundity
- Reproductive effort



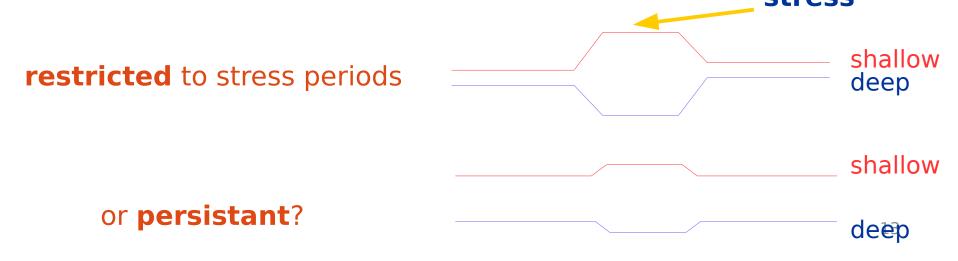
- Pilot study
- Differences of reproductive effort depending on site and temperatures

<u>Now</u>:

- Several years
- Link with stress levels (gene expressions)

→ Study of the impact of
 environmental fluctuations on the
 stress level: genetic studies

The evolutionary challenge of climate change: adaptive processes in the Mediterranean red coral Marine Pratlong Ot-Med second year PhD Context: ADACNI ANR


- Mass mortality events linked to thermal anomalies

- Individuals from shallow water more **thermotolerant** than individuals from deeper habitats

<u>Aim:</u> Understand the **thermotolerance differences** between shallow and deep populations to assess their **survival abilities** in the context of climate change.

 \rightarrow Are the differences linked with temperature between shallow and deep populations:

Genes related to cell survival & pathogen interaction

over-expressed in shallow individuals in winter

Documented for the **adaptation** to high temperatures variations for tropical corals

Existence of a genetic background of the thermotolerance?

 \rightarrow Implications for the management of populations

→ Evaluation of populations reactions to future environmental variations

Pratlong et al. submitted

Conclusion

<u>Collaborations for the understanding of coralligenous biocenosis</u>:

PhD on the socio-economic study of the coralligenous IMBE/GRECAM ADACNI ANR → modelisation of the evolutionary response of MIO some species Study of the physical connectivity MIO

Ecosystem services

Thanks to CIGESMED divers