



# TWP2. TOWARD AN INTEGRATED MODELLING OF THE MEDITERRANEAN SYSTEMS

Alberte Bondeau<sup>1</sup> and François Carlotti<sup>2</sup>

<sup>1</sup>Institut Méditerranéen de Biodiversité et d'Ecologie marine et terrestre (IMBE), Aix-en-Provence <sup>2</sup>Mediterranean Institute of Oceanography (MIO), Marseille











- Climate change and human activities are likely to strongly affect the Mediterranean socio-ecological systems on a short time scale (< 20 years)
- We need scenarios to support policies of mitigation and adaptation
- We need up-to-date models in each discipline, their integration in a generic Mediterranan vision, and their coupling
- Simulations for the past, the present, and the future:
  - past: backward simulations of the past socio-ecological systems (also a proof of the method)
  - present: sensitivity studies (to different modes of model coupling, to various human forcings, etc)
  - future: climate and socio-economic scenarios

=> a model catalogue to be put on the OT-Med site







total population of copepods



chlorophyll-a surface concentrations

# Ocean: circulation, biogeochemical cycles, ecology

#### **MIO**

Biogeochemical model Eco3M: Ecological Mechanistic and Modular Modelling

- 1) Eco3M-S/Symphonie: mesoscale hydrodynamics on nutrients, plankton distributions and cross-to-offshore exchanges.
- coupled with a high trophic level model
   (OSMOSE) => fishes distribution & stocks
- coupled with zooplanktion functioning => carbon fluxes
- 2) Mars3D-GULI/RHOMA\_Eco3M-MASSILIA: impacts of nutrients and organic matter inputs on the functioning of the coastal ecosystems

Aix\*Marseille







Winter Gross Primary Production

#### Perspectives:

Ocean: circulation, biogeochemical cycles, ecology

#### **MIO**

Biogeochemical model Eco3M: Ecological Mechanistic and Modular Modelling

3) Mars3D-MENOR/Eco3M-MED & NEMO-MED12/Eco3M-MED: dynamics of the trophic web & associated biogeochemical fluxes.

<u>Elena Alekseenko</u>: "Modeling the impact of the quantity and quality of nutrient inputs on the structural and functional dynamics of planktonic diversity".

To use management-driven main nutrients flows calculated by agro-ecosystem model toward the Mediterranean Sea Potential linkages with other models: Integrated Assessment Models, Land Use models, ...







### Ocean: circulation, biogeochemical cycles, ecology

#### **CEREGE**

Coupled oceanic circulation and biogeochemistry model: ROMS (Regional Ocean Modeling System) + PISCES (oceanic biogeochemistry)

=> coupled models set on the Iberian Margin (tests of oceanic temperature proxies simulations & of foraminifera formulations).

#### Perspectives:

interactions with a meteorological model (from MIO) to be used as forcing surface boundary conditions.







return-time river discharges

post-fire tree mortality rate

#### Perspectives:

- climate change scenarios
- land use & forest management models
- economic damage models

### Terrestrial Ecosystems: Flood / fire risks & vulnerabilities

#### **IRSTEA**

- 1) AIGA system: issue real time warning during flash flood events.
- 2) Macropolis/Micropolis-FIRE Impacts of wildland urban interface dynamics on change in wildfire risk
- 3) Ecosystem vulnerability-to-fire: statistical modeling of fire behavior & tree post-fire mortality under severe weather conditions

### Aix\*Marseille





### Terrestrial ecosystems: Forests

#### **CEREGE**

MAIDEN: Process-based stand dendroecological model, global change impacts on forest productivity

- stable isotope fractionation
- MAIDEN: vulnerability of the Mediterranean forest functional types
   <u>Guillermo Gea-Izquierdo</u>: "Assessing vulnerability to global change of
   Western Mediterranean forests using a multi-proxy mechanistic approach".
- MAIDENiso (isotope-enabled): forest ecology and paleoclimatology, adaptation to cold environment.

#### Perspectives:

- climate change impact on forest productivity & vulnerability in the Western Mediterranean,
- data assimilation (Paleomex)







#### **Terrestrial agro-**

### ecosystems

agro-ecosystem models LPJmL & LPJ-GUESS: climate + management impacts on the functioning of agro-ecosystems (water & carbon cycles, carbon allocation)

- => simulation of a range of ecosystem services (food, feed, biofuel, water fluxes, C sequestration, etc) & related socio-economic indicators.
- 1) Accounting for farming practices that lead to a better resilience,
- 2) Representing the impact of biodiversity on litter decomposition,
- 3) Assessing future irrigation, <u>Marianela Fader</u>: "Climate change impacts on irrigation water consumption & related energy demand"

#### Perspectives:

- implement management-driven main nutrients flows toward the sea,
- introduce agriculture-biodiversity relationships,
- coupling with agent-based models.



#### Climate



**CEREGE** 

Simulating past vegetation & water dynamics for the lac Chad,

Camille Contoux: "Modelling paleo-climates with a general circulation model"

=> Integration: climate model + agro-ecosystems model

**CEREGE + IMBE** 

#### **Socio-ecological integration**

climate => agro-ecosystems => society

**CEREGE + IMBE + GREQAM** 

Simulating past crop failures that could have contributed to observed (archeology) societal change during the Holocene.







society response

#### Adaptation of Mediterranean EcoNOmies of the Past to HYdroclimatic changeS

3300 BP: drought in the Near East, Mesopotamia => civilization collapse (End of bronze age)

- why? which climate signal?
- which impacts on agriculture ressources?
- which societal response?



pollen data + climate model of intermediate complexity



agro-ecosystem model (crop model)



agent-based model







Human systems (socio-economics)

**ECODEV-GREQAM** 

economic model:
DLPP Determinants of Local
Public Policies

Modelling the determinants of local public policies for farmland preservation & urban expansion.

=> exploring the expected effects of socio-demographic determinants, municipal budgetary considerations, the role of the agricultural sector, local political regime and neighbouring relationships.

Starting collaboration with IMBE-LPED, projet SIMBIOSE: designing alternative regional Scenarios for land-use and agricultural Innovative Management and BIOdiverSity consErvation.

Perspective: Running the agro-ecosystem model under these scenarios

#### **Ecosystem services & socio-economic indicators:**

- ecosystem services usually simulated by the DGVMs of LUC4C: food, fodder, fiber, fuel production, water or climate regulation, C sequestration
- ecosystem services related to DGVMs inputs or variables: fire protection, tourism, water quality, biodiversity protection
- socio-economic indicators related to DGVMs inputs or viariables:
   water consumption, energy use, labor & energy costs, employment





# Which scenarios for which future?





# Goal-oriented decision-making

(Image © Sytse Wieringa and Paul Verschure, Synthetic Perceptive, Emotive and Cognitive Systems group (SPECS), Universitat Pompeu Fabra; http://specs.upf.edu.)







### Plan



- Design the necessary exchanges of information between models to allow their integration
- Propose adaptation of models of individual and collective human behaviour, and their implementation within larger models (e.g. agent-based models) in which they will interact with ecosystem dynamics.
- Simulate the evolution of the Mediterranean system in the next decades, based on recent IPCC climate scenarios
- Identify key ecosystem functions and human activities that are potentially affected by these changes
- Develop indicators and methods of valuation of ecosystem services and socio-economic impacts based on the analysis of trade-offs and synergies
- Provide as an output scenarios of mitigation and adaptation